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Abstract

Sorting of dried ®gs prior to inspection is labor-intensive and somewhat complex. We examined the
potential of using near-infrared spectroscopy (NIRS) to automate sorting of dried ®gs. Calimyrna and
Adriatic types were inspected by hand using established criteria. For both varieties, approximately 100
passable ®gs and 100 ®gs each for the infested, rotten, sour, and dirty defect categories were examined
using NIRS and partial least-squares regression (PLS). Correct classi®cations for these varieties ranged
from 83 to 100%. About twenty PLS factors were used to make the predictions. These results indicate
that the use of NIRS to help automate inspection for dried ®g processing is feasible. However, the large
number of wavelengths needed for prediction, as indicated by PLS beta coe�cients, indicates that
implementing NIRS in ®g sorting may require an instrument capable of reading numerous wavelengths
rather than a more economical ®lter-based instrument. Published by Elsevier Science Ltd.
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1. Introduction

In the decade between 1988 and 1997, an average of 14,840 metric tons of dried ®gs per year
were produced in California, with an average value of US$16.4 million (CDFA, 1998).
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Commercial dried ®g production in California is primarily from four types: Calimyrna,
Adriatic, Kadota, and Mission (Simmons, 1931). The Adriatic type is represented by several
cultivated varieties, including Conadria, DiRedo, Earlimont, and Tena (CFAB, 1998).
Calimyrnas, unlike the other three varieties, require pollination by the ®g wasp Blastophaga
psenes (L.) in order to produce mature fruit (Michailides et al., 1996). The ostiole (the opening
at the apical end of the fruit) is larger on Calimyrnas than the other three varieties, making the
Calimyrnas somewhat more susceptible to insect pests, pathogens, and contamination with soil.
All dried ®gs produced in California must undergo a complex manual inspection by the

Dried Fruit Association (DFA) of California (Howard, 1929; Condit, 1947). Groups of 100
dried ®gs are randomly selected. Each ®g is cut open, ¯attened out, examined on both sides,
and graded as either defective in one of ®ve categories Ð insect infested, moldy, sour, ®lthy, or
worthless Ð or else as passable. A ®g is considered ``insect infested'' if there are carcasses,
frass, webbing or feeding damage indicating the presence of nitidulid beetles or larvae of the
navel orangeworm Amyelois transitella (Walker), the Indian meal moth Plodia interpunctella
(HuÈ bner), or the vinegar ¯y Drosophila melanogaster Meigen. However, ®gs with ®g wasps or
two or fewer ants are not considered insect-infested. The ``moldy'' condition is caused by fungi
of the genera Aspergillus and Fusarium, and the ``sour'' condition is caused by a variety of
yeasts and bacteria (Michailides et al., 1996). Figs not passing this inspection can not be sold
for human consumption, so ®g producers hire sorters and inspectors to perform similar
examination prior to o�cial inspection and prior to selling ®gs to processors. Automation of
the sorting procedure could bene®t the dried ®g industry by saving labor costs, making ®g
producers less vulnerable to year-to-year variability in the labor supply, and by increasing the
overall quality of ®gs shipped to packers. It is also hoped that sorting technologies could
reduce postharvest fumigant use, either by using sorting instead of fumigation to disinfest
product coming in from the orchard or by using certi®cation to meet phytosanitary
requirements for export.
Near-infrared spectroscopy (NIRS) has been used in a variety of agricultural and food

technology applications (Panford, 1987). Recent applications include the classi®cation of insect
species (Dowell et al., 1999), detection of internal insect pests of wheat (Ridgway and
Chambers, 1996; Dowell et al., 1998), and distinguishing between unparasitized weevil larvae in
wheat and those parasitized by wasps (Baker et al., 1999). In this technique, the amount of
light absorbed by materials is in¯uenced by the number of molecules of speci®c constituents.
Thus, quantitative information indicating the amount of chemical components such as water,
oil, starch, sugar, or protein in agricultural products is measurable with NIRS (Murray and
Williams, 1987). Fundamental absorptions usually occur in the mid-IR region (2500±
15,000 nm), but 1st, 2nd, and 3rd absorption overtones occur in the NIR region (700±
2500 nm). Advantages of measuring absorption in the NIR instead of mid-IR include lower
sensor costs and less sample preparation. Statistical techniques such as partial least squares
regressions (PLS), Fourier transforms, or neural networks are used to correlate NIR spectra
with components of interest. Passable and defective ®gs should di�er in their composition of
water, sugar, protein, etc. Thus, NIRS should be sensitive to these di�erences and provide an
objective means of classifying ®gs.
The objective of the present study was to examine the feasibility of using NIRS spectroscopy

to distinguish between passable and defective ®gs, and between the various defect categories.
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2. Materials and methods

2.1. Fig samples

Samples of Adriatic and Calimyrna ®gs from the 1998 crop year were obtained from DFA
of California following inspections according to established procedures. Dried ®gs brought to
packers for processing were randomly sampled by diverters, and these samples were presented
to DFA of California for inspection. DFA inspectors took 100 ®gs from each of these samples.
Each of these ®gs was cut in such a way that the ostiole remained intact and spread out so
that, instead of being hollow and bulbous, the fruit formed a single ¯at sheet. Following
cutting, each ®g was inspected according to o�cial criteria (Howard, 1929):

1. Insect Infested Ð Dried ®gs are regarded as insect infested if:
1.1. worms or insects or their pupae, dead or alive, are present in the interior of the dried

®gs; or
1.2. the excreta are distributed in the interior of the dried ®gs.

2. Moldy Ð Dried ®gs are regarded as moldy if the ®g shows a moldy or smutty condition in
an area equaling or exceeding 0.5 cm.

3. Sour Ð Dried ®gs are regarded as sour if they are:
3.1. fermented as indicated by distinct sour taste or odor, or the darkening in color

characteristic of fermentation or souring, or,
3.2. infested with internal rot (endosepsis).

4. Filthy Ð Dried ®gs are regarded as ®lthy if contaminated with dirt or extraneous matter.
5. Worthless Ð Dried ®gs are regard as worthless if so immature, woody, or ®brous as to be

practically valueless as a food.
6. ``Passable Figs'' Ð means those individual specimens of dried ®gs or separate pieces of

sliced ®gs which are not regarded as defective ®gs.

Figs classi®ed as ``worthless'' rarely get to DFA inspectors, so this category was not included
in the current analysis. For the Adriatic type, inspectors collected about 100 passable and 370
defective ®gs. For the Calimyrna type, inspectors collected about 100 passable and 270
defective ®gs. DFA inspectors stored ®gs at 48C in separate plastic bags for up to several
weeks until a su�ciently large quantity was gathered. These ®gs were then shipped to the
USDA ARS Grain Marketing and Production Research Center, Manhattan, KS, for NIR
analyses. Dried ®gs are produced on approximately 6500 hectares (CFAB, 1998), all in
California and primarily in three counties, and all dried ®gs produced in California are
inspected by DFA of California. Thus, samples obtained by these procedures are representative
of commercially-produced ®gs in the US in 1998.

2.2. NIR spectra collection

Although the ®gs had been cut open during inspection, each ®g was closed during scanning
to mimic scanning uncut ®gs. A diode-array NIR spectrometer (Perten Instruments,
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Spring®eld, IL) was used to collect 15 spectra (400±1700 nm) from a 16 mm diameter area on
each side of single ®gs placed manually on a re¯ectance ®ber probe. The area selected for
scanning did not include the cut. The 15 spectra for each side were averaged and stored,
resulting in two average spectra per ®g. The illumination ®ber was 2 mm diameter and the
re¯ectance ®ber was 7 mm diameter. A sleeve on the outer portion of the re¯ectance probe
held the ®g 18 mm from the ®ber ends. Data collection required about 1 s per side. Spectralon
with 20% re¯ectance (Labsphere Inc., North Sutton, NH) was used as a baseline. The 400±
1700 nm region recorded by the spectrometer is the limit of the Perten NIR sensor.

2.3. Data analysis

Spectra were analyzed using partial least squares (PLS) regression (Martens and Naes, 1989)
and GRAMS software (Galactic, Salem, NH). The signal below 550 nm had excessive noise
due to low energy and low sensor sensitivity in this region, thus only the 550±1700 nm region
was used. Passable ®gs were assigned a value of 1.0 and defective ®gs assigned a value of 2.0.
When analyzing data, a cuto� was selected that resulted in the greatest number of correctly
classi®ed ®gs. For developing a calibration set, cross-validation was used to select calibration
samples. Cross-validation attempts to emulate predicting unknown samples by using the
training data set itself. To do this, one sample was removed from the data set, a calibration
developed with the remaining samples, then the removed sample predicted. This was repeated
for all samples. A calibration was selected that resulted in the lowest residual sum of squares
when using the least number of factors. PLS factors are somewhat analogous to regression
coe�cients and represent common variations in spectral data combined with changes in spectra
that correspond to the regression constituents. Including more factors in calibrations can
improve predictions, but including too many can over-®t the data. A maximum of about 50%
of the total number of ®gs and only ®gs which had both sides predicted correctly as passable
or defective in the cross-validation were used in the ®nal calibration. All remaining ®gs were
used in the prediction set. For all prediction analyses, the entire ®g was considered defective if
either side was predicted as defective.
PLS reports the importance of wavelengths used in calibrations as beta coe�cients. For any

given wavelength, the absolute value of the beta coe�cient indicates how important that
wavelength was for classi®cations. Thus, beta coe�cient plots can be compared to NIR
absorptions of speci®c functional groups to indicate what chemicals contribute to unique NIR
absorptions between samples.

3. Results and discussion

NIRS distinguished between passable and defective ®gs with e88% agreement with manual
inspection for Adriatic and Calimyrna ®gs (Tables 1 and 2). When examining the classi®cation
rates for speci®c defect categories, all defects were predicted with similar accuracies, with
classi®cation accuracies ranging from about 83% to 100% agreement with manual inspection.
Both types were classi®ed with similar accuracies. Twenty factors were used in the Adriatic
calibration and 23 factors were used in the Calimyrna calibration.
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Table 1
Classi®cation of Adriatic ®gs using NIR spectra and partial least squares regression (20 factors)a

Class Correctly Classedb (%) nc Averaged Standard deviation

Calibration sete

Passable Ð all 100.0 100 1.22a 0.18
Defective Ð all 92.0 274 1.92b 0.24

Defective Ð dirty 100.0 22 2.01b 0.22
Defective Ð infested 91.5 94 1.91b 0.26
Defective Ð moldy 88.6 88 1.89b 0.25

Defective Ð rotten 94.3 70 1.93b 0.23
Prediction set
Passable Ð all 92.0 100 1.39a 0.25
Defective Ð all 89.0 280 1.92b 0.26

Defective Ð dirty 90.9 22 2.08b 0.26
Defective Ð infested 95.8 96 1.95b 0.24
Defective Ð moldy 87.0 92 1.87b 0.27

Defective Ð rotten 82.9 70 1.89b 0.25

a Means in a column for the same set and followed by the same letter are not signi®cantly di�erent at the P=0.05

level.
b Refers to agreement with classi®cation determined by manual inspection.
c n=number of spectra which equals 2� the number of ®gs.
d Average=Average predicted value where 1=Passable, 2=Defective, and cuto� value of 1.75 was used.
e Prediction results of the calibration set were achieved through cross-validation.

Table 2
Classi®cation of Calimyrna ®gs using NIR spectra and partial least squares regression (23 factors)a

Class Correctly classedb (%) nc Averaged Standard deviation

Calibration sete

Passable Ð all 100.0 100 1.18a 0.17
Defective Ð all 92.5 372 1.95b 0.20

Defective Ð dirty 92.3 52 1.97b 0.16
Defective Ð infested 95.0 120 1.99b 0.16
Defective Ð moldy 88.0 100 1.92b 0.23

Defective Ð rotten 94.0 100 1.92b 0.19
Prediction set
Passable Ð all 88.0 100 1.44a 0.28
Defective Ð all 93.7 380 1.96b 0.22

Defective Ð dirty 100 54 2.03b 0.20
Defective Ð infested 98.4 126 1.96b 0.19
Defective Ð moldy 94.0 100 1.98b 0.25

Defective Ð rotten 84.0 100 1.93b 0.23

a Means in a column for the same set and followed by the same letter are not signi®cantly di�erent at the P=0.05

level.
b Refers to agreement with classi®cation determined by manual inspection.
c n=number of spectra which equals 2� the number of ®gs.
d Average=Average predicted value where 1=Passable, 2=Defective, and cuto� value of 1.8 was used.
e Prediction results of the calibration set were achieved through cross-validation.
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When examining the predicted values, where 1=passable and 2=defective, the defective ®gs
had an average predicted value signi®cantly (P=0.05) higher than passable ®gs. No signi®cant
di�erence was seen in predicted values of speci®c defect categories (dirty, infested, moldy, or
rotten). The r 2 values for these calibrations were 0.71 for Adriatic ®gs and 0.73 for
Calimyrnas.
The correct classi®cations achieved for all defective and passable ®gs in the prediction sets

ranged from 88% to 93.7%, which was slightly lower than the range of 92±100% achieved
with the calibration set (Tables 1 and 2). This good agreement indicates that the calibration
does not over- or under-®t the data.
The classi®cation rates shown in Tables 1 and 2 were derived by selecting a class cut-o�

value that resulted in the maximum number of correctly classi®ed passable or defective ®gs.
This value was 1.75 for Adriatic ®gs and 1.8 for Calimyrna ®gs. Fig. 1 shows how the
classi®cation rate changes if a di�erent cut-o� value is selected for the prediction set. For
example, increasing the cut-o� value from 1.75 to 2.00 increases the classi®cation of passable

Fig. 1. Distribution of class values for Adriatic ®gs using NIR spectroscopy. High class numbers correspond to
defective ®gs.

Fig. 2. NIR absorption spectrum for individual Adriatic ®gs; one ``passable'' and one classi®ed in the ``moldy''
defect category.
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®gs from about 90 to 100% while correspondingly lowering the classi®cation rate of defective
®gs from about 90 to 60%. Similar graphs can be generated for Calimyrna ®gs.
Fig. 2 shows a typical NIR spectrum for ®gs. The absorbance peaks around 1000, 1200, and

1400 nm are typical for agricultural materials (Williams and Norris, 1987). Fig. 3 shows a plot
of the beta coe�cients which show the wavelengths used in Adriatic ®g classi®cations. The beta
coe�cients for Calimyrna ®gs were similar. It appears that PLS selects wavelengths throughout
the NIR region, indicating that overtones due to absorptions of CH, OH, and NH functional
groups all contribute to classi®cations. Thus, it is unlikely that any one constituent, such as
moisture or sugar content, is solely responsible for classi®cations. This is not surprising, given
the complex nature of these classi®cations. The beta coe�cient peaks throughout the NIR
region also indicate that it may be di�cult to select only a few wavelengths that could be used
for classi®cations.
These data show that it is practical to separate passable ®gs from those of di�erent defect

classes using re¯ectance NIRS. Using NIRS in re¯ectance mode o�ers high throughput and, in
principle, NIRS could be used as the basis of automated sorting. These data indicate that such
classi®cation will likely require a more sophisticated instrument capable of continuous scans
rather than a more economical ®lter-based instrument. While these results were obtained from
hand-placed ®gs, similar results should be achievable with an automated system that is capable
of scanning ®gs from two sides. Future research will include examining the biochemical basis
of wavelengths contributing to the PLS distinction between passable and defective ®gs. Given
grower concerns about labor cost and availability, further e�orts are merited for development
and transfer of NIRS technology for sorting ®gs.
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Fig. 3. Beta coe�cients used in the calibration equation for classifying Adriatic ®gs.
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